CHANGEMENTS DE BASE EN ALGÈBRE LINÉAIRE ; APPLICATIONS

Remarques générales

Thèmes du programme en rapport direct avec le sujet :

- 1) Effet d'un changement de base(s) sur la matrice d'une application linéaire. Matrices équivalentes. Caractérisation à l'aide du rang.
- 2) Matrices semblables. Réduction d'un endomorphisme en dimension finie. Diagonalisation. Trigonalisation.
- 3) Décomposition d'une forme quadratique en somme de carrés. Méthode de Gauss.

Plan

E et F sont des espaces vectoriels sur $\mathbf{K} = \mathbf{R}$ ou C, de dimensions finies respectives n et p.

1. Problème du changement de base

Soient $B = (e_i)$ et $B' = (e'_i)$ deux bases de E. La matrice $\left| P = \left(e_i^*(e'_j) \right) \right|$ est appelée <u>matrice de passage</u> de B à

B'. C'est la matrice de l'identité, considérée comme application de E muni de B' vers E muni de B; c'est donc une matrice inversible, élément de $GL_n(K)$. Si un vecteur a pour coordonnées X dans B et X' dans B', on a la formule de changement de base X = PX.

2. Changement de bases et matrice d'une application linéaire

a) Matrices équivalentes

• Soit f une application linéaire de E dans F, de matrice M lorsque E est muni d'une base B et F d'une base C, et de matrice M' lorsque E est muni d'une base B' et F d'une base C'.

Si P est la matrice de passage de B à B' et Q la matrice de passage de C à C', on a $M' = Q^{-1}MP$

• On dit que deux matrices M et N, éléments de $M_{p,n}(\mathbf{K})$, sont <u>équivalentes</u> s'il existe $P \in GL_n(\mathbf{K})$ et $Q \in GL_p(\mathbf{K})$ telles que $N = Q^{-1}MP$. (Deux matrices rectangulaires sont équivalentes ssi elles peuvent représenter la même application linéaire.)

b) Caractérisation des classes d'équivalence

Toute matrice M de $M_{p,n}(K)$ est équivalente à une unique matrice de la forme $\begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{p-r,r} & 0_{p-r,n-r} \end{pmatrix}$. L'entier r

n'est autre que le rang de M. Deux matrices sont équivalentes ssi elles ont le même rang. Il y a $\inf(n, p) + 1$ classes d'équivalence.

Calcul pratique: Le calcul du rang de M et l'obtention de bases dans lesquelles f a une matrice réduite peuvent se faire par opérations élémentaires sur les lignes et sur les colonnes de M.

3. Changement de base et matrice d'un endomorphisme

a) Matrices semblables

• Soit f un endomorphisme de E, de matrice M lorsque E est muni de la base B, de matrice M' lorsque E est muni de la base B'.

Si P est la matrice de passage de B à B', on a $M' = P^{-1} M P$.

- On dit que deux matrices M et N, éléments de $M_n(K)$, sont <u>semblables</u> s'il existe $P \in GL_n(K)$ telle que $N = P^{-1} M P$. (Deux matrices carrées sont semblables ssi elles peuvent représenter le même endomorphisme.)
- Les notions suivantes sont des invariants des classes de similitude : rang, déterminant, trace, polynôme caractéristique, polynôme minimal. Ces notions sont donc attachées intrinsèquement à f.

b) Réduction d'une matrice à la forme diagonale ou triangulaire

• La caractérisation complète des classes de similitude est hors de portée. On se contentera de donner les formes réduites usuelles : matrices diagonales ou triangulaires. On dit que f est <u>diagonalisable</u> (resp. <u>trigonalisable</u>) si M est semblable à une matrice diagonale (resp. triangulaire).

Théorèmes usuels de réduction :

- f est trigonalisable ssi son polynôme caractéristique est scindé.
- f est diagonalisable ssi son polynôme caractéristique est scindé et si, pour toute valeur propre, l'ordre de multiplicité de cette valeur propre est égal à la dimension du sous-espace propre correspondant.

c) Des applications en analyse

Étude des systèmes de suites récurrentes linéaires et des systèmes différentiels linéaires par changement de base.

4. Changement de base et matrice d'une forme quadratique

a) Matrices congruentes

- Soit q une forme quadratique sur E (il revient au même d'étudier la forme bilinéaire symétrique associée), de matrice M dans une base B, et de matrice M' dans une base B' (M et M' sont des matrices symétriques).
- Si P est la matrice de passage de B à B', on a $M'={}^{t}PMP$
- On dit que deux matrices symétriques M et N, éléments de $M_n(K)$, sont <u>congruentes</u> s'il existe $P \in GL_n(K)$ telle que $N={}^tPMP$. (Deux matrices symétriques sont congruentes ssi elles peuvent représenter la même forme quadratique.)

b) Caractérisation des classes de congruence

• Si $\mathbf{K} = \mathbf{C}$, toute matrice symétrique M de $M_n(\mathbf{K})$ est congruente à une unique matrice de la forme $\begin{pmatrix} I_r & 0 \\ 0 & 0 & 0 \end{pmatrix}$

L'entier r n'est autre que le rang de M. Deux matrices de $M_n(C)$ sont congruentes ssi elles ont le même rang. Il y a n + 1 classes de congruence.

• Ši K = R, toute matrice symétrique M de $M_n(K)$ est congruente à une unique matrice de la forme

$$\begin{pmatrix} I_s & 0 & 0 & 0 \\ \hline 0 & -I_t & 0 & 0 \\ \hline 0 & 0 & 0 & 0_{n-s-t} \end{pmatrix}$$
. Le couple d'entiers (s,t) est appelé signature de M. Deux matrices de $M_n(\mathbf{R})$ sont

congruentes ssi elles ont la même signature. Il y a $\frac{(n+1)(n+2)}{2}$ classes de congruence.

Calcul pratique: Pour la détermination du rang, de la signature et d'une base dans laquelle q a une matrice réduite, on peut utiliser la méthode de Gauss.

c) Une application en géométrie

Classification affine des coniques et des quadriques.

Bibliographie

LANG, Algèbre linéaire 1 et 2, InterÉditions RAMIS, DESCHAMPS et ODOUX, Cours de mathématiques spéciales, tomes 1 et 2, Masson