FORMES QUADRATIQUES SUR UN ESPACE VECTORIEL EUCLIDIEN. APPLICATIONS GÉOMÉTRIQUES

Remarques générales

- "L'interprétation du sujet ne doit pas conduire au contresens : tel candidat ayant à traiter "formes quadratiques sur un espace vectoriel euclidien" a consacré plus des trois quarts de son temps aux espaces vectoriels euclidiens …)." (Rapport du jury 1990)
- Les généralités sur les formes quadratiques sont supposées connues.

Plan

1. Formes quadratiques sur un espace vectoriel euclidien

On suppose connues les généralités sur les formes bilinéaires symétriques et les formes quadratiques. Soit E un espace vectoriel euclidien de dimension n. Pour le produit scalaire et la norme de E, on utilise les notations (x|y) et ||x||.

a) Théorème fondamental

Si q est une forme quadratique sur E, il existe une base orthonormée de E qui est orthogonale pour q.

 $\begin{aligned} &\textit{Premier point de vue}: \text{Si } (e_i) \text{ est une telle base, index\'ee de sorte que } q(e_1) \geq q(e_2) \geq \ldots \geq q(e_n), \text{ alors pour tout i, on a } q(e_i) = \sup \left\{ \frac{q(x)}{\|x\|^2}, \, x \neq 0 \text{ et } x \in \left\langle e_1, e_2, \ldots, e_{i-1} \right\rangle^\perp \right\}. \end{aligned}$

Deuxième point de vue : Si (e_i) est une telle base, (e_i) est une base de vecteurs propres pour l'endomorphisme $d^{-1} \circ d'$ de E, avec $d: E \to E^*$, $x \mapsto (.|x)$ et $d': E \to E^*$, $x \mapsto \phi(.|x)$, ϕ étant la forme polaire de q. De plus, pour tout i, la valeur propre associée à e_i est $q(e_i)$.

b) Conséquences

- Si u est un endomorphisme symétrique de E, u est diagonalisable dans une base orthonormée. Sa plus grande valeur propre est égale à $\sup_{x\neq 0} \frac{(u(x)|x)}{\|x\|^2}$.
- Toute matrice symétrique A est diagonalisable. Sa plus grande valeur propre est égale à $\sup_{X\neq 0} \frac{{}^t XAX}{{}^t XX}$
- Si q est une forme quadratique sur un espace vectoriel E *quelconque* de dimension finie, et si b est une base *arbitraire* de E, alors la signature de q est (r, s), où r (resp. s) est le nombre de valeurs propres strictement positives (resp. strictement négatives) de la matrice symétrique A qui représente q dans b. De plus, en diagonalisant A, on obtient une décomposition en carrés de q.
- Si q et q' sont deux formes quadratiques sur un espace vectoriel E *quelconque* de dimension finie, et si q est définie positive, alors il existe une base de E orthonormale pour q et orthogonale pour q'. Dans la pratique, si q et q' sont représentées par des matrices A et B dans une base *arbitraire* b de E, la base cherchée s'obtient en diagonalisant la matrice A⁻¹B.
 - $Exercice \ 1: Trouver \ les \ extremums \ absolus \ de \ \frac{2x^2-3y^2+2yz}{x^2+3y^2+3z^2-2yz} \ lorsque \ (x,y,z) \in \mathbf{R}^3 \setminus \{(0,0,0)\}.$
 - Exercice 2 : Démontrer algébriquement que deux normes euclidiennes sur un espace vectoriel de dimension finie sont équivalentes.
 - Exercice 3 : Soit u un endomorphisme d'un espace euclidien E. Calculer $\|u\|$ en fonction des valeurs propres de $u^* \circ u$.

2. Applications géométriques

a) Classification des coniques et des quadriques

Soit X un espace affine euclidien de direction E. On appelle <u>quadrique euclidienne</u> toute partie de X ayant dans un repère orthonormé une équation de la forme $\sum_{i,j} a_{ij} x_i x_j + \sum_i b_i x_i + c = 0, \text{ avec } A = (a_{ij}) \text{ symétrique et non nulle (c'est alors vrai dans tout repère orthonormé).}$

Si A est de rang r et si λ_1 , ..., λ_r sont les valeurs propres non nulles de A, il existe une base orthonormée dans laquelle la quadrique a une équation de l'une des formes suivantes :

$$\sum_{1 \le i \le r} \lambda_i x_i^2 + \delta = 0 \quad \text{avec } \delta \in \mathbf{R} \quad \text{ou} \quad \boxed{\sum_{1 \le i \le r} \lambda_i x_i^2 + \beta x_n = 0 \quad \text{avec } \beta \in \mathbf{R}^*}.$$

Dans les cas usuels du plan (<u>coniques</u>) et de l'espace de dimension 3 (<u>quadriques</u>), on obtient la classification suivante en fonction de la signature de la forme quadratique, en ne mentionnant que les cas "intéressants" :

(2, 0) ou (0, 2)	ellipse
(1, 1)	hyperbole
(1,0) ou $(0,1)$	parabole

(3,0) ou $(0,3)$	ellipsoïde
(2, 1) ou (1, 2)	hyperboloïde à une ou deux nappes
	cône
(2, 0) ou (0, 2)	paraboloïde elliptique
	cylindre elliptique
(1, 1)	paraboloïde hyperbolique
	cylindre hyperbolique
(1, 0) ou (0, 1)	cylindre parabolique

b) Etude locale d'une surface

Soit S une surface d'équation z = f(x, y), où f est une application de classe C^2 sur un ouvert U de \mathbf{R}^2 . Au voisinage d'un point a de U, on a la *formule de Taylor d'ordre 2*:

$$f(a+h) = f(a) + f'(a).h + \frac{1}{2}f''(a).(h, h) + o(||h||^2).$$

Le terme d'ordre 2 est une forme quadratique qui s'écrit $\frac{1}{2}$ $\left(r h_1^2 + 2s h_1 h_2 + t h_2^2\right)$, où l'on a posé

$$r = \frac{\partial^2 f}{\partial x^2}(a_1, a_2) \; , \; s = \frac{\partial^2 f}{\partial x \partial y}(a_1, a_2) \; , \; t = \frac{\partial^2 f}{\partial y^2}(a_1, a_2) \; .$$

Le paraboloïde d'équation $z = f(a) + f'(a).(x, y) + \frac{1}{2}f'(a).((x, y), (x, y))$ est appelé <u>paraboloïde osculateur</u> à S en a. Au voisinage de a, S "ressemble" à son paraboloïde osculateur et le signe de rt - s^2 permet de préciser la position de S par rapport à son plan tangent. Si rt - $s^2 > 0$ (resp. rt - $s^2 = 0$), resp. rt - $s^2 < 0$), on dit que a est un point <u>elliptique</u> (resp. <u>parabolique</u>, resp. <u>hyperbolique</u>). En un point elliptique, on a une disposition "en ballon" et en un point hyperbolique une disposition "en col"; le cas d'un point parabolique est difficile et hors programme (voir ARNAUDIÈS et FRAYSSE).

Bibliographie

AVEZ, La leçon de géométrie à l'oral de l'agrégation, Masson RAMIS, DESCHAMPS et ODOUX, Cours de mathématiques spéciales, tomes 2 et 5, Masson TISSERON, Géométries affine, projective et euclidienne, Hermann BERGER, Géométrie, vol.4, CEDIC/Fernand Nathan ARNAUDIÈS et FRAYSSE, Cours de mathématiques, tome 4, Dunod BALABANE, DUFLO, FRISCH et GUÉGAN, Géométrie, maths en kit 1, Vuibert