SUITES DE NOMBRES RÉELS

SOMMAIRE —		
1.	Convergence. Divergence. Généralités	1
	1.1. Définition	2
	1.2. Propriété : unicité de la limite	3
	1.3. Définition : suites de Cauchy.	3
	1.4. Propriété : (u_n) converge $\Rightarrow (u_n)$ de Cauchy $\Rightarrow (u_n)$ bornée. Exemple : divergence de la série harmonique	3
	1.5. Opérations algébriques sur les suites convergentes	4
	1.6. Opérations algébriques sur les suites divergentes vers +∞	5
	1.7. Théorème : suites et applications continues. Exemple : $x \mapsto \cos \frac{1}{x}$ ne peut pas se prolonger par continuité en 0.	6
	1.8. Cas des suites récurrentes	7
	1.9. Théorème de Cesaro	8
2.	Quelques théorèmes de comparaison et d'encadrement	9
	2.1. et 2.2. Théorèmes de compatibilité avec l'ordre	9
	2.3. Cas des suites divergentes vers +∞ ou -∞. Exemple : divergence vers +∞ de la série harmonique.	10
	2.4. Théorème des "gendarmes". Exercice : $\sum_{k=0}^{n} \frac{1}{C_n^k} \rightarrow 2$.	10
	2.5. Théorème de la limite monotone	11
	2.5.1. Application : constante d'Euler	12
	2.5.2. Une suite monotone est soit convergente soit divergente (vers $+\infty$ ou $-\infty$)	12
	2.6. Suites adjacentes	13
	2.6.1. Application 1 : nombre e	14
	2.6.2. Application 2 : moyenne arithmético-géométrique	15
	2.7. Théorème des segments emboîtés	16
3.	Suites extraites. Valeur d'adhérence. Théorème de Bolzano-Weierstrass	16
	3.1. Définition : suite extraite et valeur d'adhérence	16
	3.2. Théorème : lien entre la limite d'une suite et celle de ses extraites. Exercice : divergence de $(\cos n)$	17
	3.3. Propriété : suite extraite des termes pairs et suite extraite des termes impairs	18
	3.4. Théorème de Bolzano-Weierstrass	19
	3.4.1. ℝ est complet	20
	3.4.2. Théorème de Heine	21
	3.4.3. Théorème : une suite bornée n'admettant qu'une seule valeur d'adhérence converge	22
4.	Quelques applications	23
	4.1. Théorème : fonction continue sur un segment	23
	4.2. Théorème spécial à certaines séries alternées	24

1. Convergence. Divergence. Généralités

1.1. Définition

• On dit qu'une suite (u_n) converge vers un réel ℓ si :

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow |u_n - \ell| \le \varepsilon)$$

• Si un tel réel ℓ n'existe pas, on dit que (u_n) diverge.

Avec les quantificateurs, la divergence s'écrit :
$$\forall \ell \in \mathbb{R}, \exists \varepsilon \in \mathbb{R}^*, \forall N \in \mathbb{N}, \exists n \in \mathbb{N}, (n \ge N \text{ et } |u_n - \ell| > \varepsilon)$$

• On dit qu'une suite (u_n) diverge vers $+\infty$ si :

$$\forall A \in \mathbb{R}_{+}^{*}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq N \Rightarrow u_n \geq A)$$

• On dit qu'une suite (u_n) diverge vers $-\infty$ si $(-u_n)$ diverge vers $+\infty$, autrement dit :

$$\forall B \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \le B)$$

$$B = -A$$

Exemples de manipulation directe de cette définition :

1. Démontrer que la suite (u_n) définie par $u_n = (-1)^n$ diverge.

Supposons au contraire qu'elle converge vers un certain réel ℓ :

$$\forall \varepsilon \in \mathbb{R}^*_+, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow |(-1)^n - \ell| \le \varepsilon$$

Avec $\varepsilon = \frac{1}{2}$, cela donne :

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow \ell - \frac{1}{2} \le (-1)^n \le \ell + \frac{1}{2})$$

Pour un entier *n* pair tel que $n \ge N$, on a : $\ell - \frac{1}{2} \le 1 \le \ell + \frac{1}{2}$

Donc: $\ell \in \left[\frac{1}{2}, \frac{3}{2}\right]$

Pour un entier *n* impair tel que $n \ge N$: $\ell - \frac{1}{2} \le -1 \le \ell + \frac{1}{2}$

Donc: $\ell \in [-\frac{3}{2}, -\frac{1}{2}]$

Absurde, donc (u_n) diverge.

On verra plus loin une autre démonstration à l'aide des suites extraites.

2. Démontrer que la suite (v_n) définie par $v_n = \frac{(-1)^n}{n}$ converge.

Le calcul des premiers termes de (v_n) nous amène à la conjecture : (v_n) converge vers le réel 0. Montrons-le.

Fixons $\varepsilon \in \mathbb{R}_+^*$.

On cherche à prouver l'existence d'un entier N tel que :

$$\forall n \in \mathbb{N}, (n \ge N \Rightarrow |v_n| \le \varepsilon)$$

C'est-à-dire : $\forall n \in \mathbb{N}, (n \ge N \Rightarrow 1 \le n\varepsilon)$

$$\forall n \in \mathbb{N}, (n \ge N \Rightarrow n \ge \frac{1}{8})$$

On constate qu'il suffit de choisir :
$$N = E\left(\frac{1}{\varepsilon}\right) + 1 \ge \frac{1}{\varepsilon}$$

Donc (v_n) converge vers 0.

1.2. Propriété Unicité de la limite

Si (u_n) converge alors sa limite ℓ est unique

<u>Démonstration</u>:

Soit $\varepsilon \in \mathbb{R}_+^*$. Supposons :

• (u_n) converge vers ℓ_1 : $\exists N_1 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_1 \Rightarrow |u_n - \ell_1| \le \varepsilon)$

• (u_n) converge vers ℓ_2 : $\exists N_2 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_2 \Rightarrow |u_n - \ell_2| \le \varepsilon)$

Posons $N = \max(N_1; N_2)$. Alors:

$$\forall n \in \mathbb{N}, (n \ge N \Rightarrow |\ell_1 - \ell_2| \le |\ell_1 - u_n| + |u_n - \ell_2| \le 2\varepsilon)$$

En faisant tendre ε vers 0, on obtient : $\ell_1 = \ell_2$

Notation:

la convergence de (u_n) vers ℓ se note : $\lim_{n \to +\infty} u_n = \ell$ ou $u_n \xrightarrow[n \to \infty]{} \ell$

la divergence de (u_n) vers $+\infty$ se note : $\lim_{n\to+\infty} u_n = +\infty$ ou $u_n \xrightarrow[n\to\infty]{} +\infty$

1.3. Définition Suites de Cauchy

On dit qu'une suite (u_n) est de Cauchy si :

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2, (p > q \ge N \Rightarrow |u_p - u_q| \le \varepsilon)$$

Remarque : par négation, (u_n) n'est pas de Cauchy lorsque :

$$\exists \varepsilon \in \mathbb{R}_+^*, \forall N \in \mathbb{N}, \exists (p, q) \in \mathbb{N}^2, (p > q \ge N \text{ et } |u_p - u_q| > \varepsilon)$$

1.4. Propriétés

$$(u_n)$$
 converge \Rightarrow (u_n) de Cauchy \Rightarrow (u_n) bornée

<u>Démonstration</u>:

Supposons que (u_n) converge vers un réel ℓ . Soit $\epsilon \in \mathbb{R}_+^*$. On a :

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow |u_n - \ell| \le \varepsilon)$$

Soient maintenant des entiers p et q tels que : $p > q \ge N$

D'après l'inégalité triangulaire, on a :

$$|u_p - u_q| \le |u_p - \ell| + |u_q - \ell| \le 2\varepsilon$$

Ce qui prouve que la suite (u_n) est de Cauchy.

(On verra, plus loin que, pour les suites réelles, la réciproque est vraie)

Comme (u_n) est de Cauchy, on a avec $\varepsilon = 1$ et q = N:

$$\exists N_1 \in \, \mathbb{N}, \, \forall p \in \, \mathbb{N}, \, (p \geq N_1 \, \Rightarrow \, |u_p - u_N| \leq 1)$$

C'est-à-dire : $p \ge N_1 \implies u_N - 1 \le u_p \le u_N + 1$

Posons: $M = \max\{|u_0|; ...; |u_{N-1}|, |u_N+1|\}$

Ainsi: $\forall n \in \mathbb{N}, |u_n| \leq M$

Donc (u_n) est bornée.

Exemple:

Montrer la divergence de la suite (u_n) définie pour $n \in \mathbb{N}^*$ par :

$$u_n = \sum_{k=1}^n \frac{1}{k}$$
 (Série harmonique)

Pour tout $N \in \mathbb{N}^*$, on a:

$$u_{2N} - u_N = \sum_{k=1}^{2N} \frac{1}{k} - \sum_{k=1}^{N} \frac{1}{k} = \frac{1}{N+1} + \dots + \frac{1}{2N} > N \frac{1}{2N} = \frac{1}{2}$$

Donc, il existe un ε (à savoir $\frac{1}{2}$) tel que pour tout entier $N \in \mathbb{N}^*$, il existe un couple $(p, q) \in \mathbb{N}^2$ (à savoir q = N

et p = 2N) vérifiant $p > q \ge N$ et $|u_p - u_q| > \varepsilon$.

Ce qui prouve que la suite (u_n) n'est pas de Cauchy.

D'après la contraposée de 1.4., on en déduit que (u_n) ne converge pas, donc (u_n) diverge.

On verra plus loin que (u_n) diverge vers $+\infty$.

1.5. Opérations algébriques sur les suites convergentes

- a) (u_n) converge vers ℓ_1 et (v_n) converge vers $\ell_2 \implies (u_n + v_n)$ converge vers $\ell_1 + \ell_2$.
- b) (u_n) bornée et (v_n) converge vers $0 \Rightarrow (u_n v_n)$ converge vers 0.
- c) (u_n) converge vers ℓ_1 et (v_n) converge vers $\ell_2 \Rightarrow (u_n v_n)$ converge vers $\ell_1 \ell_2$.
- d) (u_n) converge vers $\ell \in \mathbb{R}^* \Rightarrow \left(\frac{1}{u_n}\right)$ converge vers $\frac{1}{\ell}$.

<u>Démonstration</u>:

a) Soit $\varepsilon \in \mathbb{R}_+^*$.

$$\exists N_1 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant N_1 \Rightarrow |u_n - \ell_1| \leqslant \varepsilon$$

$$\exists N_2 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_2 \Rightarrow |v_n - \ell_2| \le \varepsilon)$$

Posons $N = \max(N_1; N_2)$. On a alors:

$$n \ge N \implies |(u_n + v_n) - (\ell_1 + \ell_2)| \le |u_n - \ell_1| + |v_n - \ell_2| \le 2\varepsilon$$

Ce qui prouve que $(u_n + v_n)$ converge vers $\ell_1 + \ell_2$.

b) Comme (u_n) est bornée :

$$\exists M \in \mathbb{R}_{+}^{*}, \forall n \in \mathbb{N}, |u_n| \leq M$$

Soit $\varepsilon \in \mathbb{R}_+^*$. Comme (v_n) converge vers 0:

$$\exists N \in \mathbb{N}, \, \forall n \in \mathbb{N}, \, (n \geq N \Rightarrow |v_n| \leq \frac{\varepsilon}{M})$$

Donc:

$$n \ge N \implies |u_n v_n| \le \varepsilon$$

Ce qui prouve que la suite $(u_n v_n)$ converge vers 0.

c) On écrit:

$$u_n v_n - \ell_1 \ell_2 = (u_n - \ell_1) v_n + \ell_1 (v_n - \ell_2)$$

On a:

$$\begin{cases} u_n - \ell_1 & \longrightarrow 0 \\ (v_n) \text{ bornée (car convergente)} \end{cases}$$

D'après b), on déduit $(u_n - \ell_1)v_n \xrightarrow[n \to \infty]{} 0$

De même, on montre que $\ell_1(v_n - \ell_2) \xrightarrow[n \to \infty]{} 0$

Et d'après a), on déduit $u_n v_n - \ell_1 \ell_2 \longrightarrow 0$ d'où c).

d) Quitte à changer u_n en son opposé, on peut supposer $\ell > 0$.

Comme (u_n) converge vers ℓ :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq N \Rightarrow |u_{n} - \ell| \leq \varepsilon)$$

En particulier avec $\varepsilon = \frac{\ell}{2}$, on obtient :

$$\exists N_1 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_1 \implies 0 < \frac{\ell}{2} \le u_n)$$

Soit $\varepsilon \in \mathbb{R}_+^*$. Toujours, comme (u_n) converge vers ℓ :

$$\exists N_2 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_2 \implies |u_n - \ell| \le \varepsilon)$$

Pour $n \ge \max(N_1; N_2)$ on a alors :

$$\left|\frac{1}{u_n} - \frac{1}{\ell}\right| = \frac{|\ell - u_n|}{u_n \ell} \leqslant \frac{2\varepsilon}{\ell^2}$$

Ce qui prouve que $\left(\frac{1}{u_n}\right)$ converge vers $\frac{1}{\ell}$.

1.6. Opérations algébriques sur les suites divergentes vers +∞

- a) (u_n) diverge vers $+\infty \Rightarrow \left(\frac{1}{u_n}\right)$ converge vers 0.
- b) (u_n) converge vers 0 et (u_n) strictement positive $\Rightarrow \left(\frac{1}{u_n}\right)$ diverge vers $+\infty$.
- c) (u_n) converge vers $\ell > 0$ et (v_n) diverge vers $+\infty \implies (u_n v_n)$ diverge vers $+\infty$.

<u>Démonstration</u>:

a)
$$(u_n)$$
 diverge vers $+\infty$: $\forall A \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \ge A)$

Soit
$$\varepsilon \in \mathbb{R}_+^*$$
. Pour $A = \frac{1}{\varepsilon}$, on obtient:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \ge \frac{1}{\varepsilon})$$

Par décroissance de la fonction inverse sur \mathbb{R}_{+}^{*} :

$$\exists N \in \mathbb{N}, \, \forall n \in \mathbb{N}, \, (n \geq N \Rightarrow \left| \frac{1}{u_n} \right| \leq \varepsilon)$$

Donc
$$\left(\frac{1}{u_n}\right)$$
 converge vers 0.

b) Fixons $A \in \mathbb{R}_+^*$. Comme (u_n) converge vers 0, on a avec $\varepsilon = \frac{1}{A}$:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \le \frac{1}{A})$$

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow \frac{1}{u_n} \ge A)$$

Donc
$$\left(\frac{1}{u_n}\right)$$
 diverge vers $+\infty$.

c) Comme (u_n) converge vers $\ell > 0$, on obtient avec $\varepsilon = \frac{\ell}{2}$:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow 0 < \frac{\ell}{2} \le u_n)$$

Comme (v_n) diverge vers $+\infty$:

$$\forall A \in \mathbb{R}_+^*, \exists N' \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N' \Rightarrow \nu_n \ge \frac{2A}{\ell})$$

Pour tout $n \ge \max(N, N')$, on a alors : $u_n v_n \ge A$

Ce qui prouve bien que $(u_n v_n)$ diverge vers $+\infty$.

1.7. Théorème Suites et applications continues

Soit X une partie non vide de \mathbb{R} .

Soit (u_n) une suite d'éléments de X convergeant vers un réel $\ell \in X$.

Soit f une application continue en ℓ et à valeurs dans \mathbb{R} .

La suite $(f(u_n))$ converge vers $f(\ell)$.

<u>Démonstration</u>:

Soit $\varepsilon \in \mathbb{R}_+^*$. Alors, comme f est continue en ℓ , on a:

$$\exists n \in \mathbb{R}^*$$
 tel que : $(|x - \ell| < n \implies |f(x) - f(\ell)| < \varepsilon)$

Mais la suite (u_n) converge vers ℓ . Donc pour ce réel η ci-dessus, on peut trouver $N \in \mathbb{N}$ tel que :

$$n \ge N \implies |u_n - \ell| < \eta$$

On a donc, par transitivité des implications :

$$n \ge N \implies |f(u_n) - f(\ell)| < \varepsilon$$

Ceci prouve que la suite $(f(u_n))$ converge vers $f(\ell)$.

Dans la pratique, on utilise souvent la version contraposée de 1.7, en ce sens : si (u_n) et (v_n) convergent vers ℓ et si les suites $(f(u_n))$ et $((f(v_n))$ convergent vers des limites différentes, alors f n'est pas continue en ℓ .

Exemple:

Soit $\lambda \in [-1, 1]$.

Soit:

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \cos\frac{1}{x} & \text{si } x \in \mathbb{R}^* \\ \lambda & \text{si } x = 0 \end{cases}$$

Alors f n'est pas continue en 0.

En effet, supposons le contraire.

Considérons la suite (u_n) définie pour $n \in \mathbb{N}^*$ par : $u_n = \frac{1}{2\pi n}$

Comme on a supposé f continue en 0, le théorème 1.6. permet d'affirmer qu'alors :

$$f(u_n) \xrightarrow[n\to\infty]{} f(0)$$

Or:

$$\forall n \in \mathbb{N}^*, f(u_n) = 1 \text{ et } f(0) = \lambda$$

Donc:

$$\lambda = 1$$

Mais, considérons maintenant la suite (v_n) définie pour $n \in \mathbb{N}^*$ par :

$$v_n = \frac{1}{\frac{\pi}{2} + 2\pi n}$$

Le même raisonnement que ci-dessus montre que : $\lambda = 0$

D'où une contradiction.

Donc f n'est pas continue en 0.

1.8. Conséquence du théorème 1.7.

Soit X une partie non vide de \mathbb{R} .

Soit f continue sur X telle que $f(X) \subset X$.

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 \in X \\ u_{n+1} = f(u_n), \, \forall n \in \mathbb{N} \end{cases}$$

Si (u_n) converge vers ℓ alors $f(\ell) = \ell$

<u>Démonstration</u>:

Immédiat en passant à la limite dans l'égalité : $u_{n+1} = f(u_n)$

1.9. Exercice: théorème de CESARO

Soit (u_n) une suite convergeant vers un réel ℓ .

 $v_n = \frac{1}{n} \sum_{k=1}^n u_k$ Alors la suite (v_n) définie, pour $n \in \mathbb{N}^*$, par :

converge également vers ℓ .

Autrement dit, le théorème de Césaro affirme que la convergence entraîne la convergence en moyenne.

(On dit que (u_n) converge <u>en moyenne</u> vers ℓ ou converge au <u>sens de Césaro</u>)

<u>Démonstration</u>:

Fixons $\varepsilon \in \mathbb{R}_+^*$.

Comme (u_n) converge vers ℓ :

$$\exists N \in \mathbb{N}, \forall k \in \mathbb{N}, (k \ge N \Rightarrow |u_k - \ell| \le \varepsilon)$$

Pour n > N, on a :

$$v_n - \ell = \frac{1}{n} \sum_{k=1}^n (u_k - \ell)$$

$$|v_n - \ell| \le \frac{1}{n} \sum_{k=1}^n |u_k - \ell| \le \frac{1}{n} \sum_{k=1}^N |u_k - \ell| + \frac{1}{n} \sum_{k=N+1}^n |u_k - \ell|$$

Posons
$$A_n = \frac{1}{n} \sum_{k=1}^{N} |u_k - \ell|$$
.

Il est clair
$$A_n \longrightarrow 0$$
 donc : $\exists N' \in \mathbb{N}^*, \forall n \in \mathbb{N}, (n \ge N' \Rightarrow |A_n| \le \varepsilon$)

Pour $n > \max(N, N')$, on a alors :

$$|v_n - \ell| \le A_n + \frac{1}{n} \sum_{k=N+1}^n |u_k - \ell| \le \varepsilon + \frac{n-N}{n} \varepsilon \le 2\varepsilon$$

Ce qui prouve bien que (v_n) converge vers ℓ .

Compléments sur le théorème de CESARO:

1. Une suite qui converge en moyenne ne converge pas nécessairement. Autrement dit, la réciproque du théorème de Césaro est fausse. Voici un contre-exemple :

$$u_n = (-1)^n$$

On vu que (u_n) diverge tandis que (v_n) définie par $v_n = \frac{(-1)^n}{n}$ converge vers 0.

2. Le théorème de Césaro admet un prolongement pour les suites divergentes vers +∞:

Soit (u_n) une suite divergeant vers $+\infty$.

Alors la suite (v_n) définie, pour $n \in \mathbb{N}^*$, par : $v_n = \frac{1}{n} \sum_{k=1}^n u_k$

diverge également vers +∞.

Démonstration:

Fixons $A \in \mathbb{R}_+^*$.

Par hypothèse :
$$\exists N_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_0 \Rightarrow u_n \ge 3A)$$

Pour $n > N_0$, on a :

$$v_n = \frac{1}{n} \sum_{k=1}^{N_0} u_k + \frac{1}{n} \sum_{k=N_0+1}^{n} u_k \ge \frac{1}{n} \sum_{k=1}^{N_0} u_k + 3 \frac{n - N_0}{n} A$$

Posons
$$A_n = \frac{1}{n} \sum_{k=1}^{N_0} u_k$$
, ainsi : $v_n \ge A_n + 3A - 3 \frac{N_0}{n} A$

Il est clair
$$A_n \xrightarrow[n \to \infty]{} 0$$
, donc : $\exists N_1 \in \mathbb{N}^*, \forall n \in \mathbb{N}, (n \ge N_1 \Rightarrow -A \le A_n \le A)$

De même, $-3 \frac{N_0}{n} A \xrightarrow[n \to \infty]{} 0$, donc :

$$\exists N_2 \in \mathbb{N}^*, \forall n \in \mathbb{N}, (n \ge N_2 \Rightarrow -A \le -3 \frac{N_0}{n} A \le A)$$

Si bien que pour $n \ge \max(N_0, N_1, N_2)$, on a :

$$v_n \ge -A + 3A - A$$
$$v_n \ge A$$

Ce qui prouve bien que (v_n) diverge vers $+\infty$.

Dans cette version encore, la réciproque du théorème de Césaro est fausse. (Voir 3.3.)

2. Quelques théorèmes de comparaison et d'encadrement

2.1. Théorème compatibilité avec l'ordre

Si
$$(u_n)$$
 converge et: $\forall n \in \mathbb{N}, u_n > 0 \text{ (resp. } \geq 0)$

Alors:
$$\lim_{n \to \infty} u_n \ge 0$$

Les inégalités deviennent toutes larges lorsqu'on passe à la limite

<u>Démonstration</u>:

Notons $\ell = \lim_{n \to \infty} u_n$ et supposons $\ell < 0$.

Pour $\varepsilon = -\frac{\ell}{2}$ (noter qu'on a bien $\varepsilon \in \mathbb{R}_+^*$), la convergence de (u_n) s'écrit :

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \le \frac{\ell}{2} < 0)$$

Ce qui contredit l'hypothèse de positivité. Donc $\ell \geq 0$.

2.2.Conséquence

Si
$$(u_n)$$
 et (v_n) convergent et : $\forall n \in \mathbb{N}, u_n < v_n \text{ (resp. } u_n \leq v_n)$

Alors:
$$\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$$

Démonstration:

On applique 2.1. à la suite $(v_n - u_n)$.

2.3. Théorème

Soient (u_n) et (v_n) deux suites telles que : $\forall n \in \mathbb{N}, u_n \leq v_n$

Si (u_n) diverge vers $+\infty$ alors (v_n) diverge vers $+\infty$.

Si (v_n) diverge vers $-\infty$ alors (u_n) diverge vers $-\infty$

<u>Démonstration</u>:

Fixons $A \in \mathbb{R}_+^*$. Comme (u_n) diverge vers $+\infty$:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \ge A)$$

Et comme $v_n \ge u_n$:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow v_n \ge A)$$

Donc (v_n) diverge vers $+\infty$.

Idem pour le second énoncé.

Exemple:

Prouver que la série harmonique diverge vers +∞.

D'après la décroissance de l'application $t \mapsto \frac{1}{t}$ sur $]0; +\infty[$ on a immédiatement :

$$\forall n \in \mathbb{N}^*, \frac{1}{n+1} \le \int_n^{n+1} \frac{1}{x} dx \le \frac{1}{n}$$
 (Illustrer)

En sommant, pour n allant de 1 à N:

$$0 \le \ln(N+1) \le \sum_{n=1}^{N} \frac{1}{n}$$

D'où la divergence vers +∞ de la série harmonique.

2.4. Théorème d'encadrement ou des "gendarmes"

Soient (u_n) , (v_n) et (w_n) trois suites telles que :

- $\exists N_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_0 \implies u_n \le v_n \le w_n)$
- (u_n) et (v_n) convergent vers le même réel ℓ .

Alors (v_n) converge vers ℓ .

<u>Démonstration</u>:

Soit $\varepsilon \in \mathbb{R}_+^*$.

Par hypothèse:

$$\exists N_1 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_1 \Rightarrow |u_n - \ell| \le \varepsilon)$$

$$\exists N_2 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_2 \implies |w_n - \ell| \le \varepsilon)$$

Pour $n \ge \max(N_0, N_1, N_2)$, on a:

$$\ell - \varepsilon \le u_n \le v_n \le w_n \le \ell + \varepsilon$$

Donc (v_n) converge vers ℓ .

Exercice:

Soit (u_n) la suite définie par : $u_n = \sum_{k=0}^n \frac{1}{C_n^k}$

Démontrer que (u_n) converge vers 2.

Pour $n \ge 5$, on a :

$$u_n = \frac{1}{C_n^0} + \frac{1}{C_n^1} + \sum_{k=2}^{n-2} \frac{1}{C_n^k} + \frac{1}{C_n^{n-1}} + \frac{1}{C_n^n} = 2\left(1 + \frac{1}{n}\right) + \sum_{k=2}^{n-2} \frac{1}{C_n^k}$$

Or, pour tout $k \in [2, n-2]$:

 $C_n^k \geqslant C_n^2 \geqslant \frac{n(n-1)}{2}$

Donc:

$$0 \le \sum_{k=2}^{n-2} \frac{1}{C_n^k} \le \frac{2(n-3)}{n(n-1)}$$

D'après le théorème des gendarmes, on déduit :

$$\sum_{k=2}^{n-2} \frac{1}{C_n^k} \xrightarrow[n \to \infty]{} 0$$

D'où:

$$u_n \xrightarrow{n \to \infty} 2$$

2.5 Théorème limite "monotone"

Toute suite croissante et majorée converge

Toute suite décroissante et minorée converge

<u>Démonstration</u>:

Soit (u_n) une suite croissante et majorée.

On considère l'ensemble :

$$\{u_n, n \in \mathbb{N}\}$$

Cet ensemble étant non vide et majoré, il admet une borne supérieure $\ell \in \mathbb{R}$:

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists N \in \mathbb{N}, \ \ell - \varepsilon < u_{N} \leq \ell$$

En particulier, avec $\varepsilon = \frac{1}{n}$:

$$\exists N \in \mathbb{N}, \ \ell - \frac{1}{n} < u_n \leq \ell$$

Et comme (u_n) est croissante :

$$\forall n \in \mathbb{N}, (n \ge N \Rightarrow \ell - \frac{1}{n} < u_n \le \ell)$$

Et d'après le théorème des gendarmes, (u_n) converge vers ℓ .

Même raisonnement pour les suites minorées et décroissantes.

2.5.1. Application: constante d'Euler

On considère la suite $u = (u_n)$ définie pour $n \in \mathbb{N}^*$, par :

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$

Nous allons montrer, à l'aide du théorème 2.5. que cette suite converge.

On montre que *u* est décroissante :

Pour tout entier
$$n \ge 2$$
, on a : $u_n - u_{n-1} = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$

Et, tenant compte de l'inégalité :
$$\forall X \in]-1, +\infty[, \ln(1+X) \le X$$

On obtient avec
$$X = -\frac{1}{n} \in]-1, 0[: u_n - u_{n-1} \le 0]$$

Ce qui prouve la décroissance de la suite u.

On montre que *u* est positive (i.e. minorée par 0) :

Par décroissance de l'application $t \mapsto \frac{1}{t}$ sur $]0, +\infty[$, on a :

$$\forall k \in [1, n], \int_{k}^{k+1} \frac{1}{t} dt \le \frac{1}{k}$$

En sommant pour k allant de 1 à n-1:

$$\int_{1}^{n} \frac{1}{t} dt \le \sum_{k=1}^{n-1} \frac{1}{k} \le \sum_{k=1}^{n} \frac{1}{k}$$

D'où:
$$\forall n \in \mathbb{N}^*, u_n \ge 0$$

<u>Bilan</u>: la suite *u* est décroissante et minorée (par 0) donc converge.

Sa limite, notée γ, s'appelle la constante d'Euler.

2.5.2. Conséquence du théorème de la limite monotone

$$(u_n)$$
 croissante \Rightarrow $((u_n)$ converge ou (u_n) diverge vers $+\infty$)

<u>Démonstration</u>:

Soit (u_n) une suite croissante.

- Si (u_n) est majorée, alors elle converge, d'après 2.5.
- Si (u_n) n'est pas majorée : $\forall M \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, u_N > M$

Et comme
$$(u_n)$$
 est croissante : $\forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \ge u_N \ge M)$

Ce qui prouve bien que (u_n) diverge vers $+\infty$.

On montre de même que :

$$(u_n)$$
 décroissante \Rightarrow $((u_n)$ converge ou (u_n) diverge vers $-\infty$)

Application : hypothèse supplémentaire pour obtenir la réciproque du théorème de Césaro

Soit (u_n) une suite monotone.

Soit
$$(v_n)$$
 la suite définie pour $n \in \mathbb{N}^*$ par : $v_n = \frac{1}{n} \sum_{k=1}^n u_k$

On suppose que (v_n) tend vers $\ell \in \overline{\mathbb{R}}$.

Alors (u_n) tend aussi vers ℓ .

Démonstration :

Comme (u_n) est monotone, elle converge ou diverge (vers $+\infty$ ou $-\infty$). Mais alors, d'après le théorème direct de Césaro, (v_n) aura le même comportement. Donc (u_n) se comporte bien comme (v_n) .

2.6.1. Définition Suites adjacentes

Lorsque
$$\begin{cases} (u_n) \text{ est croissante} \\ (v_n) \text{ est décroissante}, \text{ on dit que les suite } (u_n) \text{ et } (v_n) \text{ sont adjacentes} \\ v_n - u_n \xrightarrow[n \to \infty]{} 0 \end{cases}$$

Remarque : la condition $\forall n \in \mathbb{N}$, $u_n \leq v_n$ est inutile dans les hypothèses. Elle découle des trois autres.

2.6.2. Théorème Suites adjacentes

Si (u_n) et (v_n) sont adjacentes, alors (u_n) et (v_n) convergent vers la même limite ℓ .

De plus :
$$\forall n \in \mathbb{N}, u_n \le u_{n+1} \le \ell \le v_{n+1} \le v_n$$

Démonstration :

Montrons, tout d'abord : $\forall n \in \mathbb{N}, u_n \leq v_n$

Posons, pour tout $n \in \mathbb{N}$: $w_n = v_n - u_n$

On a: $\forall n \in \mathbb{N}, w_{n+1} - w_n = (v_{n+1} - v_n) - (u_{n+1} - u_n)$

Et d'après le sens de variation des suites (u_n) et (v_n) :

 $\forall n \in \mathbb{N}, w_{n+1} - w_n \leq 0$

Donc (w_n) est décroissante, c'est-à-dire : $\forall n \in \mathbb{N}, u_n \leq v_n$

On en déduit encore : $\forall n \in \mathbb{N}, u_0 \le u_n \le v_n \le v_0$

On prouve maintenant la convergence des suites (u_n) et (v_n) grâce au théorème de la limite monotone :

Comme, (u_n) est croissante et majorée par v_0 , elle converge vers un certain réel ℓ .

Comme, (v_n) est décroissante et minorée par u_0 , elle converge vers un certain réel ℓ' .

En écrivant enfin : $u_n = v_n + (u_n - v_n)$

Un passage à la limite donne : $\ell = \ell' + 0$

 $\ell = \ell'$

Enfin, on a nécessairement : $\forall n \in \mathbb{N}, u_n \leq \ell$

En effet, supposons le contraire : $\exists n_0 \in \mathbb{N}$ tel que $\ell < u_{n_0}$

Posons $\ell' = \frac{u_{n_0} + \ell}{2}$. (ℓ' est la moyenne de u_{n_0} et de ℓ et comme $\ell < u_{n_0}$, on a : $\ell < \ell' < u_{n_0}$).

Comme (u_n) est croissante, on a : $\forall n \ge n_0$, $\ell' < u_n$

Et par passage à la limite : $\ell' \leq \ell$

Ce qui contredit $\ell < \ell'$... Donc on a bien : $u_n \le \ell$

On démontre, de même, que : $\ell \leq v_n$

D'où : $\forall n \in \mathbb{N}, u_n \leq u_{n+1} \leq \ell \leq v_{n+1} \leq v_n$

2.6.1. Application 1 : le nombre e

- 1. Montrer que les suites (x_n) et (y_n) définies par $x_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ et $y_n = x_n + \frac{1}{nn!}$ sont adjacentes.
- 2. Déterminer sept décimales de leur limite e.
- 3. Démontrer que e est un nombre irrationnel.

Remarque : on peut également poser $y_n = x_n + \frac{1}{n!}$. Les calculs sont plus simples mais la convergence

(vers e) plus lente.

Solution:

1. La suite (x_n) est bien sûr croissante.

Montrons que (y_n) est décroissante en calculant $y_{n+1} - y_n$:

$$y_{n+1} - y_n = x_{n+1} + \frac{1}{(n+1)(n+1)!} - x_n - \frac{1}{nn!} = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!} = \frac{n(n+1) + n - (n+1)^2}{n(n+1)(n+1)!}$$
$$y_{n+1} - y_n = \frac{-1}{n(n+1)(n+1)!} < 0$$

Donc (y_n) est décroissante.

Enfin on a:
$$y_n - x_n = \frac{1}{nn!}$$

Donc:
$$\lim_{n \to +\infty} (y_n - x_n) = 0$$

Les suites (x_n) et (y_n) sont bien adjacentes donc admettent une limite commune (que l'on notera e)

2. On a donc, pour tout entier
$$n$$
: $x_n \le \mathbf{e} \le y_n$

Il suffit de déterminer un entier *n* tel que :
$$\frac{1}{nn!} < 10^{-7}$$

n = 10 convient. Donc $\mathbf{e} \simeq x_{10}$ à 10^{-7} près.

On obtient :
$$e \simeq 2,7182818 \text{ (à } 10^{-7} \text{ près)}$$

3. Supposons $\mathbf{e} \in \mathbb{Q}$. Alors, il existe des entiers p et q tels que $\mathbf{e} = \frac{p}{q}$.

On aurait en particulier :
$$x_q < \frac{p}{q} < y_q$$
.

En réduisant au même dénominateur la somme $x_q = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{q!}$, on peut écrire : $x_q = \frac{a}{q!}$ où $a \in \mathbb{N}$.

D'où:
$$\frac{a}{q!} < \frac{p}{q} < \frac{a}{q!} + \frac{1}{qq!}$$

En multipliant par q!: $a < p(q-1)! < a + \frac{1}{q} < a + 1$

L'entier p(q-1)! serait compris strictement entre a et a+1 qui sont des entiers consécutifs, ce qui est absurde. Donc $\mathbf{e} \in \mathbb{R} \setminus \mathbb{Q}$.

Remarque : ceci prouve au passage, que \mathbb{Q} n'est pas complet (il existe des suites de rationnels qui convergent vers des irrationnels)

2.6.2. Application 2 : moyenne arithmético-géométrique

Soient a et b deux réels tels que a > b > 0.

Soient (a_n) et (b_n) les suites définies par :

$$a_0 = a$$
; $b_0 = b$

$$\forall n \in \mathbb{N}, \ a_{n+1} = \frac{a_n + b_n}{2} \text{ et } b_{n+1} = \sqrt{a_n b_n}$$

Alors (a_n) et (b_n) convergent vers une même limite.

Solution:

Il suffit de montrer que (a_n) et (b_n) sont adjacentes.

 $\forall n \in \mathbb{N},$

$$a_{n+1}^2 - b_{n+1}^2 = \frac{a_n^2 + 2a_nb_n + b_n^2}{4} - a_nb_n$$

$$(a_{n+1} - b_{n+1})(a_{n+1} + b_{n+1}) = \left(\frac{a_n - b_n}{2}\right)^2 \ge 0$$

Et comme (a_n) et (b_n) sont positives (faire une récurrence), il vient :

$$\forall n \in \mathbb{N}, a_{n+1} \geq b_{n+1}$$

Enfin, comme $a_0 > b_0$:

$$\forall n \in \mathbb{N}, a_n \geq b_n$$

Bien que ce résultat ne soit pas une hypothèse nécessaire du théorème des suites adjacentes, on l'utilise pour prouver les suivants :

• En effet, d'une part : $\forall n \in \mathbb{N}, \ a_{n+1} \leq \frac{a_n + b_n}{2} \leq \frac{a_n + a_n}{2} \leq a_n$

Donc la suite (a_n) est décroissante.

• D'autre part : $\forall n \in \mathbb{N}, \, b_{n+1} - b_n = \sqrt{a_n b_n} \, - b_n = \sqrt{b_n} \, \left(\sqrt{a_n} - \sqrt{b_n} \, \right) \geqslant 0$

(par croissance de
$$t \mapsto \sqrt{t} \operatorname{sur} \mathbb{R}_+$$
)

Donc la suite (b_n) est croissante.

• On considère maintenant la propriété \wp définie pour $n \in \mathbb{N}$ par :

$$\wp(n): |a_n - b_n| \le \frac{1}{2^n} |a - b|$$

- * On a bien sûr $\wp(0)$.
- * Montrons que pour tout $n \in \mathbb{N}$, $\wp(n) \Rightarrow \wp(n+1)$:

Supposons
$$\wp(n)$$
: $|a_n - b_n| \le \frac{1}{2^n} |a - b|$

Alors:
$$|a_{n+1} - b_{n+1}|^2 = \left(\frac{a_n - b_n}{2}\right)^2 \le \frac{1}{2^{2n+2}} |a - b|^2$$

Et par croissance de $t \mapsto \sqrt{t}$ sur $\mathbb{R}_+ : |a_{n+1} - b_{n+1}| \le \frac{1}{2^{n+1}} |a - b|$

D'où $\wp(n+1)$.

Du principe de raisonnement par récurrence, on déduit :

$$\forall n \in \mathbb{N}, \ \wp(n) : |a_n - b_n| \le \frac{1}{2^n} |a - b|$$

D'où, par comparaison :

$$\lim_{n\to+\infty} (a_n - b_n) = 0$$

On a donc prouvé que les suites (a_n) et (b_n) sont adjacentes.

Elles convergent donc vers une même limite (appelée moyenne arithmético-géométrique de a et b. On ne connaît pas d'expression de cette limite mais elle est liée aux intégrales elliptiques de $2^{\text{ème}}$ espèce...)

2.7. Corollaire Théorème des segments emboîtés

Soient (a_n) et (b_n) deux suites telles que :

- $\forall n \in \mathbb{N}, a_n \leq b_n$
- $\forall n \in \mathbb{N}, [a_{n+1}, b_{n+1}] \subset [a_n, b_n]$
- $b_n a_n \longrightarrow 0$

Alors:

$$\exists \ell \in \mathbb{R}, \ \bigcap_{n \in \mathbb{N}} [a_n, b_n] = \{\ell\}$$

<u>Démonstration</u>:

Par hypothèse, les suites (a_n) et (b_n) sont adjacentes, elles convergent donc vers un même réel ℓ tel que :

$$\forall n \in \mathbb{N}, a_n \leq \ell \leq b_n$$

Donc:

$$\ell \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$$

Soit $x \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$. Alors:

$$\forall n \in \mathbb{N}, \, a_n \leq x \leq b_n$$

Et par passage à la limite :

$$\ell \le x \le \ell$$

Donc:

$$x = \ell$$

3. Suites extraites. Valeur d'adhérence. Théorème de Bolzano-Weierstrass

3.1. Définition Suite extraite. Valeur d'adhérence

Soit (u_n) une suite et $\sigma: \mathbb{N} \to \mathbb{N}$ une application strictement croissante.

Une telle application σ s'appelle une extractrice.

La suite $(u_{\sigma(n)})$ s'appelle <u>suite extraite</u> de (u_n) .

Si la suite $(u_{\sigma(n)})$ converge vers ℓ , on dit que ℓ est une <u>valeur d'adhérence</u> de la suite (u_n)

Remarque : comme σ est strictement croissante, une simple récurrence montre que :

$$\forall n \in \mathbb{N}, \sigma(n) \geq n$$

3.2. Théorème

Si une suite (u_n) tend vers $\ell \in \overline{\mathbb{R}}$ alors toute suite extraite tend vers ℓ

Démonstration:

Cas où $\ell \in \mathbb{R}$

Par " (u_n) **tend** vers $\ell \in \mathbb{R}$ ", il faut entendre : " (u_n) converge vers $\ell \in \mathbb{R}$ **ou** $(|u_n|)$ diverge vers $+\infty$

Soit $\varepsilon \in \mathbb{R}_{+}^{*}$.

Comme (u_n) converge vers ℓ :

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow |u_n - \ell| \le \varepsilon)$$

Et comme
$$\sigma(n) \ge n$$
: $n \ge N \implies \sigma(n) \ge N \implies |u_{\sigma(n)} - \ell| \le \varepsilon$

Ce qui prouve que la suite $(u_{\sigma(n)})$ converge vers ℓ .

Cas où $\ell = +\infty$

Soit $A \in \mathbb{R}_+^*$.

Comme (u_n) diverge vers $+\infty$:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow u_n \ge A)$$

Et comme
$$\sigma(n) \ge n$$
: $n \ge N \implies \sigma(n) \ge N \implies u_{\sigma(n)} \ge A$

Ce qui prouve que la suite $(u_{\sigma(n)})$ diverge vers $+\infty$.

Cas où $\ell = -\infty$

Analogue au précédent.

L'intérêt du théorème 3.2 est sa contraposée :

S'il existe deux suites extraites de (u_n) qui convergent vers des limites différentes, alors (u_n) diverge.

On retrouve ainsi la divergence de la suite (u_n) définie par $u_n = (-1)^n$.

En effet, pour tout
$$p \in \mathbb{N}$$
: $u_{2p} = 1$ et $u_{2p+1} = -1$

Les suites extraites (u_{2p}) et (u_{2p+1}) convergent vers des limites différentes, donc (u_n) diverge.

Exercice : divergence de la suite ($\cos n$).

Supposons que la suite ($\cos n$) converge vers un certain réel ℓ .

D'une part :
$$cos(n+2) + cos n = 2cos(n+1)cos 1$$

Par passage à la limite : $2\ell = 2\ell \cos 1$

cos
$$A + \cos B = 2\cos \frac{A+B}{2}\cos \frac{A-B}{2}$$

Et comme cos $1 \neq 0$: $\ell = 0$

D'autre part : $\cos(2n) = 2\cos^2 n - 1$

Par passage à la limite : $\ell = 2\ell^2 - 1$

Ce qui contredit $\ell = 0$.

Donc la suite $(\cos n)$ diverge.

On montre, par des techniques similaires la divergence de la suite $(\sin n)$

La réciproque du théorème 3.2. est vraie. Elle découle, par exemple, du résultat suivant :

3.3. Propriété

 (u_n) tend vers $\ell \in \overline{\mathbb{R}} \iff$ les deux suites extraites (u_{2p}) et (u_{2p+1}) tendent vers ℓ .

Démonstration:

Le sens \Rightarrow est le théorème 3.2.

Montrons la réciproque.

Cas où $\ell \in \mathbb{R}$

Soit $\varepsilon \in \mathbb{R}_+^*$.

Comme (u_{2p}) converge vers ℓ : $\exists N_1 \in \mathbb{N}, \forall p \in \mathbb{N}, (p \ge N_1 \Rightarrow |u_{2p} - \ell| \le \varepsilon)$

Comme (u_{2p+1}) converge vers $\ell: \exists N_2 \in \mathbb{N}, \forall p \in \mathbb{N}, (p \ge N_2 \implies |u_{2p+1} - \ell| \le \varepsilon)$

Posons $N = \max(2N_1, 2N_2 + 1)$.

Soit $n \ge N$.

Si n = 2p, alors $p \ge N_1$ et : $|u_n - \ell| \le \varepsilon$

Si n = 2p + 1, alors $p \ge N_2$ et: $|u_n - \ell| \le \varepsilon$

Dans tous les cas, on a : $n \ge N \implies |u_n - \ell| \le \varepsilon$

Ce qui prouve que la suite (u_n) converge vers ℓ .

Cas où $\ell = +\infty$

Soit $A \in \mathbb{R}_{+}^{*}$.

Comme (u_{2p}) diverge vers $+\infty$: $\exists N_1 \in \mathbb{N}, \forall p \in \mathbb{N}, (p \ge N_1 \Rightarrow u_{2n} \ge A)$

Comme (u_{2p+1}) diverge vers $+\infty$: $\exists N_2 \in \mathbb{N}, \forall p \in \mathbb{N}, (p \ge N_2 \Rightarrow u_{2p+1} \ge A)$

Posons $N = \max(2N_1, 2N_2 + 1)$.

Soit $n \ge N$.

Si n = 2p, alors $p \ge N_1$ et: $u_n \ge A$

Si n = 2p + 1, alors $p \ge N_2$ et: $u_n \ge A$

Dans tous les cas, on a : $n \ge N \implies u_n \ge A$

Ce qui prouve que la suite (u_n) diverge vers $+\infty$.

Cas où $\ell = -\infty$

Analogue au précédent.

Remarques:

- On peut étendre ce résultat à des familles de suites extraites dont les images des extractrices forment une partition de \mathbb{N} (et a fortiori un recouvrement de \mathbb{N}). Par exemple (u_{3p}) , (u_{3p+1}) et (u_{3p+2}) .
- Soit (u_n) une suite telle que toute suite extraite converge vers ℓ . Alors les suites extraites (u_{2p}) et (u_{2p+1}) convergent vers ℓ . D'après 3.3. on en déduit que (u_n) converge vers ℓ ce qui prouve la réciproque de 3.2.

<u>Application</u>: contre-exemple à la réciproque du théorème de Césaro, version "divergence vers +∞"

$$u_n = \begin{cases} n & \text{si } n \text{ est pair} \\ 0 & \text{si } n \text{ est impair} \end{cases}$$

Il est clair que (u_n) diverge (considérer les suites extraites (u_{2p}) et (u_{2p+1}) et utiliser 3.2.)

Montrons, cependant, que (u_n) diverge vers $+\infty$ au sens de Césaro :

Posons, pour
$$n \in \mathbb{N}^*$$
: $v_n = \frac{1}{n} \sum_{k=1}^n u_k$

On a, pour tout $p \in \mathbb{N}^*$:

$$v_{2p} = \frac{1}{2p} \sum_{k=1}^{2p} u_k = \frac{1}{2p} \sum_{\substack{k=1 \ k \text{ pair}}}^{2p} u_k = \frac{1}{2p} \sum_{j=1}^{p} u_{2j} = \frac{1}{2p} \sum_{j=1}^{p} 2j = \frac{p+1}{2}$$

$$v_{2p+1} = \frac{1}{2p+1} \sum_{k=1}^{2p+1} u_k = \frac{1}{2p+1} \sum_{\substack{k=1 \ k \text{ pair}}}^{2p+1} u_k = \frac{1}{2p+1} \sum_{j=1}^{p} u_{2j} = \frac{1}{2p+1} \sum_{j=1}^{p} 2j = \frac{p(p+1)}{2p+1}$$

Les suites extraites (v_{2p}) et (v_{2p+1}) divergent toutes deux vers $+\infty$, donc la suite (v_n) aussi.

3.4. Théorème Bolzano-Weiestrass

Soit (u_n) une suite **bornée** de réels. Alors, on peut extraire de (u_n) une sous-suite convergente.

(Variante : toute suite bornée de réels admet une valeur d'adhérence)

<u>Démonstration</u>:

L'idée générale:

Notons a_0 (resp. b_0) la borne inférieure (resp. supérieure) de l'ensemble $\{u_n, n \in \mathbb{N}\}$. (Existent car (u_n) bornée)

Posons $I_0 = [a_0, b_0]$ et c_0 le centre de I_0 .

L'un, au moins, des deux intervalle $[a_0, c_0]$ et $[c_0, b_0]$ contient une **infinité de termes** de la suite (x_n) . (On a bien dit une infinité de termes ; ce n'est pas forcément une infinité de valeurs)

Notons I_1 cet intervalle et c_1 son centre. On réitère le procédé ci-dessus avec le segment I_1 .

On construit ainsi une suite de segments emboîtés dont la longueur tend vers 0. L'intersection de tous ces segments est donc un certain réel ℓ . En outre, par construction, chacun de ces segments contient au moins un terme de la suite (u_n) . On peut donc construire une suite extraite en choisissant à chaque fois l'un de ces termes et cette suite converge nécessairement vers ℓ .

Mise en forme:

Soient $a_0 = \inf\{u_n, n \in \mathbb{N}\}\$ et $b_0 = \sup\{u_n, n \in \mathbb{N}\}\$. Ainsi :

$$\forall n \in \mathbb{N}, \ a_0 \le u_n \le b_0$$

Pour tous réels α et β tels que $a_0 \le \alpha < \beta \le b_0$, notons :

$$N(\alpha, \beta) = \{n \in \mathbb{N} \mid \alpha \le u_n \le \beta\}$$

 $(N(\alpha, \beta) \text{ est l'ensemble des indices } n \text{ pour lesquels } \alpha \leq u_n \leq \beta)$

On sait que $N(a_0, b_0)$ est infini. Posons $c_0 = \frac{a_0 + b_0}{2}$.

Comme $N(a_0, b_0) = N(a_0, c_0) \cup N(c_0, b_0)$, l'un, au moins, des deux ensembles $N(a_0, c_0)$ ou $N(c_0, b_0)$ est aussi infini.

Si $N(a_0, c_0)$ est infini alors on pose $a_1 = a_0$ et $b_1 = c_0$.

Si $N(c_0, b_0)$ est infini alors on pose $a_1 = c_0$ et $b_1 = b_0$.

Le segment $[a_1, b_1]$ ainsi construit est ainsi tel que $N(a_1, b_1)$ soit infini.

Supposons maintenant $[a_n, b_n]$ construit tel que $N(a_n, b_n)$ soit infini. Posons $c_n = \frac{a_n + b_n}{2}$.

Comme $N(a_n, b_n) = N(a_n, c_n) \cup N(c_n, b_n)$, l'un, au moins, des deux ensembles $N(a_n, c_n)$ ou $N(c_n, b_n)$ est infini.

Si $N(a_n, c_n)$ est infini alors on pose $a_{n+1} = a_n$ et $b_{n+1} = c_n$.

Si $N(c_n, b_n)$ est infini alors on pose $a_{n+1} = c_n$ et $b_{n+1} = b_n$.

On a ainsi construit, par récurrence, une suite $([a_n, b_n])$ de segments emboîtés :

$$[a_0, b_0] \supset [a_1, b_1] \supset ... \supset [a_n, b_n] \supset ...$$

De plus, par construction, la longueur de $[a_n, b_n]$ est $\frac{b_0 - a_0}{2^n}$.

Les segments $[a_n, b_n]$ ont donc des longueurs qui tendent vers 0. Les suites (a_n) et (b_n) sont donc adjacentes.

Notons ℓ leur limite commune.

Reste à montrer qu'il existe une application σ strictement croissante de \mathbb{N} dans \mathbb{N} telle que la suite $(u_{\sigma(n)})$ converge vers ℓ .

Posons $\sigma(0) = 0$.

Puis, pour tout $n \in \mathbb{N}^*$, on choisit $\sigma(n)$ égal à un indice strictement supérieur à $\sigma(n-1)$ qui est situé dans $N(a_n, b_n)$. (Il en existe nécessairement puisque $N(a_n, b_n)$ est infini : on peut, par exemple, choisir le plus petit)

La suite $(u_{\sigma(n)})$ est extraite de (u_n) et $a_n \leq u_{\sigma(n)} \leq b_n$ donc $(u_{\sigma(n)})$ converge vers ℓ .

La réciproque du théorème de Bolzano-Weierstrass est bien sûr fausse. Considérons la suite (u_n) définie par :

$$u_n = \begin{cases} n & \text{si } n \text{ est pair} \\ 0 & \text{si } n \text{ est impair} \end{cases}$$

La suite extraite (u_{2p+1}) est constante (égale à 0) donc converge, cependant, (u_n) n'est pas bornée.

Le théorème de Bolzano-Weiestrass admet de très nombreuses applications. Nous allons en donner quelques unes.

3.4.1 Théorème R est complet

Dans \mathbb{R} , toute suite de Cauchy converge.

<u>Démonstration</u>:

Soit (u_n) une suite de Cauchy.

Fixons $\varepsilon \in \mathbb{R}_+^*$.

Comme (u_n) est de Cauchy, elle est bornée (1.4.). D'après le théorème de Bolzano-Weierstrass, on peut donc en extraire une sous-suite convergente :

Il existe $\sigma: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(u_{\sigma(n)})$ converge vers un certain réel ℓ :

$$\exists N_1 \in \, \mathbb{N}, \, \forall n \in \, \mathbb{N}, \, (n \geq N_1 \, \Rightarrow \, |\, u_{\sigma(n)} - \ell| \leq \varepsilon)$$

En outre, comme (u_n) est de Cauchy :

$$\exists N_2 \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2, (p \geqslant q \geqslant N_2 \Rightarrow |u_p - u_q| \leqslant \varepsilon$$

Posons $N = \max(N_1, N_2)$. Ainsi, d'après l'inégalité triangulaire :

$$\forall n \in \mathbb{N}, (n \ge N \Rightarrow |u_n - \ell| \le |u_n - u_{\sigma(n)}| + |u_{\sigma(n)} - \ell| \stackrel{\sigma(n) \ge n \ge N_2}{\le} 2\varepsilon)$$

Ce qui prouve bien que (u_n) converge vers ℓ .

3.4.2. Théorème de Heine

Toute fonction numérique continue sur un segment I est uniformément continue sur ce segment I.

On rappelle qu'un segment est un intervalle fermé borné.

<u>Démonstration</u>:

Soit f une fonction continue sur I.

Supposons f non uniformément continue sur I.

Alors : $\exists \varepsilon \in \mathbb{R}^*_{\perp}$ tel que :

$$\forall n \in \mathbb{R}^+$$
. $\exists (x : y) \in I^2$ tel que : $(|x - y| < n \text{ et } |f(x) - f(y)| \ge \varepsilon)$

En particulier, en choisissant $\eta = \frac{1}{n} (n \in \mathbb{N}^*)$,

$$\forall n \in \mathbb{N}^*, \exists (x_n; y_n) \in I^2 \text{ tel que} : (|x_n - y_n| < \frac{1}{n} \text{ et } |f(x_n) - f(y_n)| \ge \varepsilon)$$
 (1)

Comme *I* est borné, les suites (x_n) et (y_n) ainsi définies le sont également.

D'après le théorème de Bolzano-Weierstrass, on peut donc en extraire des sous-suites qui convergent.

Soit $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ une application strictement croissante telle que la suite $(x_{\sigma(n)})$ converge.

Notons ℓ sa limite. (On a nécessairement $\ell \in I$ puisque I est fermé).

Fixons $\varepsilon' \in \mathbb{R}_+^*$. On a donc :

$$\exists N_1 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_1 \Rightarrow |x_{\sigma(n)} - \ell| \le \frac{\varepsilon'}{2})$$

Mais, d'autre part, pour tout $n \in \mathbb{N}^*$, on a d'après (1):

$$|x_{\sigma(n)}-y_{\sigma(n)}|<\frac{1}{\sigma(n)}$$

Comme $\frac{1}{\sigma(n)}$ tend vers 0, on a :

$$\exists N_2 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N_2 \Rightarrow \left| \frac{1}{\sigma(n)} \right| \le \frac{\varepsilon'}{2})$$

Pour tout $n \ge \max(N_1, N_2)$, on a alors :

$$|y_{\sigma(n)} - \ell| \le |y_{\sigma(n)} - x_{\sigma(n)}| + |x_{\sigma(n)} - \ell| \le \frac{\varepsilon'}{2} + \frac{\varepsilon'}{2} \le \varepsilon'$$

Ceci prouve que la suite $(y_{\sigma(n)})$ converge également vers ℓ .

Or, f étant continue sur I, on peut affirmer que les suites $(f(x_{\sigma(n)}))$ et $(f(y_{\sigma(n)}))$ convergent vers $f(\ell)$. Donc:

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow \left| f(y_{\sigma(n)}) - f(x_{\sigma(n)}) \right| < \varepsilon$$

Ce qui contredit (1).

 $\underline{\text{Conclusion}}: f \text{ est uniformément continue sur le segment } I.$

3.4.3. Théorème

Une suite bornée admettant une unique valeur d'adhérence ℓ converge vers ℓ

<u>Démonstration</u>:

Par l'absurde.

Soit (u_n) une suite bornée admettant une unique valeur d'adhérence ℓ .

Supposons que (u_n) ne converge pas vers ℓ :

$$\exists \varepsilon \in \mathbb{R}_{+}^{*}, \forall N \in \mathbb{N}, \exists n \in \mathbb{N}, (n \geq N \text{ et } |u_{n} - \ell| > \varepsilon)$$

Alors l'ensemble $A = \{n \in \mathbb{N} \mid |u_n - \ell| > \varepsilon\}$ est infini.

Soit $\sigma : \mathbb{N} \to A$ strictement croissante. (Existe car A est une partie infinie de \mathbb{N})

Ainsi:
$$\forall n \in \mathbb{N}, |u_{\sigma(n)} - \ell| > \varepsilon$$

Comme la suite $(u_{\sigma(n)})$ est bornée (car extraite de (u_n) qui l'est), on peut (Bolzano-Weierstrass) en extraire une sous-suite convergente :

Il existe $\sigma': \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(u_{\sigma \circ \sigma'(n)})$ converge vers un certain réel ℓ'

On a alors: $\forall n \in \mathbb{N}, |u_{\sigma_0,\sigma'(n)} - \ell| > \varepsilon$

Et par passage à la limite $|\ell' - \ell| \ge \varepsilon$

Donc $\ell' \neq \ell$. La suite (u_n) aurait alors deux valeurs d'adhérences distinctes. Contradiction.

Donc (u_n) converge vers ℓ .

4. Quelques applications

4.1. Théorème Fonction continue sur un segment

Soit I = [a, b] un segment de \mathbb{R} et $f : I \to \mathbb{R}$ une application continue.

Alors f est bornée sur I et f atteint ses bornes.

C'est une application du théorème des segments emboîtés et du théorème de Bolzano-Weierstrass.

<u>Démonstration</u>:

1. Montrons : f bornée sur I

Supposons f non **bornée** sur I.

Soit c le milieu de I.

Posons $a_1 = a$ et $b_1 = c$ si f non bornée sur [a, c].

Posons $a_1 = c$ et $b_1 = b$ sinon.

En réitérant ce procédé, on construit, par récurrence, une suite de segments emboîtés :

$$[a, b] \supset [a_1, b_1] \supset ... \supset [a_n, b_n] \supset ...$$

Sur chacun de ces intervalles, f est, par construction, non bornée.

De plus, par construction, la longueur de $[a_n, b_n]$ est $\frac{b-a}{2^n}$.

Les segments $[a_n, b_n]$ ont donc des longueurs qui tendent vers 0. Les suites (a_n) et (b_n) sont donc adjacentes.

Notons x_0 leur limite commune.

Comme f est continue en x_0 , on a (avec $\varepsilon = 1$):

$$\exists \eta \in \mathbb{R}_+^*, \forall x \in I : (|x - x_0| < \eta \implies |f(x) - f(x_0)| < 1)$$

C'est-à-dire :
$$\exists \eta \in \mathbb{R}_+^*, \forall x \in I : (|x - x_0| < \eta \implies f(x_0) - 1 < f(x) < f(x_0) + 1)$$

Donc f est bornée sur $]x_0 - \eta, x_0 + \eta[$.

Comme les segments $[a_n, b_n]$ ont des longueurs qui tendent vers 0, on a :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists N \in \mathbb{N}^{*} : (n \geq N \Rightarrow b_{n} - a_{n} < \varepsilon)$$

Donc, pour un certain N, les segments $[a_n; b_n]$, $n \ge N$, sont contenus dans $]x_0 - \eta$, $x_0 + \eta[$.

Or, f n'est pas bornée sur $[a_n, b_n]$ d'où une contradiction.

Donc f est bornée sur I.

2. Montrons : f atteint ses bornes

On vient de voir que f est bornée sur I. Notons $M = \sup_{I} f$ et $m = \inf_{I} f$.

Montrons qu'il existe x_0 dans I tel que $f(x_0) = M$.

Comme M est la borne supérieure de f sur I:

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists x \in I : M - \varepsilon < f(x) \leq M$$

En particulier, avec
$$\varepsilon = \frac{1}{n}$$
: $\exists x_n \in I : M - \frac{1}{n} < f(x_n) \leq M$

La suite $(f(x_n))$ converge donc vers M.

En outre, la suite (x_n) est bornée. D'après le théorème de Bolzano-Weierstrass, on peut donc en extraire une sous suite qui converge vers un certain réel x_0 . Notons $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ une application strictement croissante telle que $(x_{\sigma(n)})$ converge vers x_0 .

La fonction f étant continue en x_0 , on a : $M = \lim_{n \to +\infty} f(x_{\sigma(n)}) = f(x_0)$.

Donc f atteint son maximum.

On démontre, de même, que f atteint son minimum.

4.2. Théorème spécial à certaines séries dites alternées

Soit $\sum_{n\geq 0} u_n$ une série vérifiant les conditions suivantes :

- i) (u_n) est à signes alternés : $(\forall n \in \mathbb{N}, u_n = (-1)^n |u_n|)$ ou $(\forall n \in \mathbb{N}, u_n = (-1)^{n+1} |u_n|)$
- ii) la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0
- iii) la suite $(|u_n|)_{n \in \mathbb{N}}$ est décroissante.

Alors dans ces conditions:

la série
$$\sum_{n\geq 0} u_n$$
 est convergente et son reste $R_n = \sum_{k\geq n+1} u_k$ vérifie : $\operatorname{sgn} R_n = \operatorname{sgn} u_{n+1}$ et $|R_n| \leq |u_{n+1}|$

<u>Démonstration</u>:

Posons: $S_n = \sum_{k=0}^n u_k$

On suppose que : $\forall n \in \mathbb{N}, u_n = (-1)^n |u_n|$

(Le cas
$$\forall n \in \mathbb{N}$$
, $u_n = (-1)^{n+1} |u_n|$ est analogue)

Considérons les deux suites (a_n) et (b_n) définies par :

$$a_n = S_{2n+1}$$
 et $b_n = S_{2n}$

• On a:

$$\forall n \in \mathbb{N}, a_{n+1} - a_n = S_{2n+3} - S_{2n+1} = u_{2n+3} + u_{2n+2} = -|u_{2n+3}| + |u_{2n+2}|$$

Et comme la suite $(|u_n|)_{n \in \mathbb{N}}$ est décroissante :

$$\forall n \in \mathbb{N}, -|u_{2n+3}| + |u_{2n+2}| \ge 0$$

Donc

$$\forall n \in \mathbb{N}, a_{n+1} - a_n \ge 0$$

La suite (a_n) est croissante.

• On a :

$$\forall n \in \mathbb{N}, b_{n+1} - b_n = S_{2n+2} - S_{2n} = u_{2n+2} + u_{2n+1} = |u_{2n+2}| - |u_{2n+1}|$$

Et comme la suite $(|u_n|)_{n \in \mathbb{N}}$ est décroissante :

$$\forall n \in \mathbb{N}, |u_{2n+2}| - |u_{2n+1}| \le 0$$

Donc $\forall n \in \mathbb{N}, b_{n+1} - b_n \leq 0$

La suite (b_n) est décroissante.

• On a:

$$\forall n \in \mathbb{N}, b_n - a_n = S_{2n+1} - S_{2n} = u_{2n+1} \xrightarrow[n \to \infty]{} 0$$

Les suites (a_n) et (b_n) sont donc adjacentes. Notons S leur limite commune. On a donc :

$$\forall n \in \mathbb{N}, S_{2n+1} \leq S_{2n+3} \leq S \leq S_{2n+2} \leq S_{2n}$$

De l'encadrement $S_{2n+1} \leq S \leq S_{2n}$, on déduit :

$$u_{2n+1} \leqslant S - S_{2n} \leqslant 0$$

De l'encadrement $S_{2n+1} \leq S \leq S_{2n+2}$, on déduit :

$$0 \le S - S_{2n+1} \le u_{2n+2}$$

On a donc:

$$(*) \begin{cases} u_{2n+1} \le R_{2n} \le 0 \\ 0 \le R_{2n+1} \le u_{2n+2} \end{cases}$$

Ceci prouve déjà : $sgn(R_{2n}) = sgn(u_{2n+1}) = négatif$

$$\operatorname{sgn}(R_{2n+1}) = \operatorname{sgn}(u_{2n+2}) = \operatorname{positif}$$

On peut donc affirmer : $\forall n \in \mathbb{N}, \operatorname{sgn}(R_n) = \operatorname{sgn}(u_{n+1})$

De plus, en passant aux valeurs absolues dans (*), il vient :

$$\begin{cases} 0 \leq |\,R_{2n}\,| \leq |\,u_{2n+1}\,| \\ 0 \leq |\,R_{2n+1}\,| \leq |\,u_{2n+2}\,| \end{cases}$$

On peut donc affirmer : $\forall n \in \mathbb{N}, |R_n| \leq |u_{n+1}|$