ETUDE DU COMPORTEMENT ASYMPTOTIQUE DE SUITES; RAPIDITÉ DE CONVERGENCE

Remarques générales

- Programme : "Etude du comportement asymptotique de suites. Approximation d'un nombre réel ou complexe au moyen de suites : rapidité de convergence et performance d'un algorithme. Accélération de convergence : méthode de Richardson-Romberg."
- Le comportement asymptotique et la rapidité de convergence d'une suite relèvent de l'analyse théorique. Le calcul numérique effectif de la limite ne fait pas partie a priori du sujet ; il convient toutefois d'évoquer brièvement les problèmes liés au calcul approché, en distinguant vitesse de convergence et performance.
- On a choisi dans le plan ci-dessous de centrer les exemples sur quelques nombres importants de l'analyse : racines carrées, e, π , constante d'Euler. Il y a d'autres situations exploitables : par exemple, les méthodes de résolution approchée des équations fournissent des convergences des divers types.

Plan

1. Etude de suites convergentes

Soit (u_n) une suite convergeant vers a. Si (v_n) converge aussi vers a, on dit que (v_n) converge plus rapidement $que \ (u_n) \ lorsque \ v_n - a = o(u_n - a). \ \underline{Acc\'{e}l\'{e}rer \ la \ convergence} \ de \ (u_n), \ c'est \ construire \ une \ telle \ suite \ (v_n).$

a) Différents types de convergence

La convergence est lente ssi
$$\left| \frac{u_{n+1} - a}{u_n - a} \right| \longrightarrow 1$$
. C'est le cas lorsque $|u_n - a| \approx \frac{\lambda}{n^{\alpha}}$ $(\lambda > 0 \text{ et } \alpha > 0)$.

• Ex 1: nombre e. La suite $u_n = \left(1 + \frac{1}{n}\right)^n$ converge vers e; $e - u_n \approx \frac{e}{2n}$.

- Ex 2 : constante d'Euler. La suite $u_n = \sum_{k=1}^{n} \frac{1}{k} \ln(n)$ converge vers la constante d'Euler γ ; $u_n \gamma \approx \frac{1}{2n}$.

On dit que la convergence est géométrique (ou d'ordre 1) ssi
$$\left| \frac{u_{n+1} - a}{u_n - a} \right| \longrightarrow k \quad (0 < k < 1).$$
C'est le cas lorsque $|u_n - a| \approx \lambda \ k^n \quad (\lambda > 0 \ \text{et} \ 0 < k < 1).$

• Ex 3 : nombre π . On note u_n (resp. v_n) la demi-longueur du polygone régulier à 2^n côtés ($n \ge 2$) inscrit dans le (resp. circonscrit au) cercle trigonométrique. (u_n) et (v_n) sont adjacentes et convergent vers π ; $v_n - u_n \approx \frac{\pi^3}{2^{4n}}$.

On dit que la convergence est rapide ssi
$$\left| \frac{u_{n+1} - a}{u_n - a} \right| \longrightarrow 0$$
. En particulier, on dit qu'elle est d'ordre r, avec $r > 1$, lorsque $\left| \frac{u_{n+1} - a}{(u_n - a)^r} \right| \longrightarrow c$ ($c > 0$). C'est le cas lorsque $\left| u_n - a \right| \approx \lambda \ k^{(r^n)}$ ($\lambda > 0$, $0 < k < 1$ et $r > 1$).

- Ex 4 : méthode de Héron. La suite $u_0 > 0$, $u_{n+1} = \frac{1}{2} \left(u_n + \frac{d}{u_n} \right)$ converge vers \sqrt{d} ; $\left| \frac{u_{n+1} \sqrt{d}}{(u_n \sqrt{d})^2} \right| \longrightarrow \frac{1}{2\sqrt{d}}$.
- Ex 5: nombre e. Les suites $u_n = \sum_{k=0}^{n} \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n,n!}$ sont adjacentes; $e u_n \approx \frac{1}{n,n!}$; $v_n e \approx \frac{1}{n^3,n!}$.

b) Méthodes d'accélération de convergence

Barycentration

• Ex 6: nombre π . Avec les notations de l'exemple 3, posons $w_n = \frac{2}{3}u_n + \frac{1}{3}v_n$. (w_n) converge vers π plus rapidement que (u_n) et (v_n) : $w_n - \pi \approx \frac{\pi^5}{20.16^n}$.

Développement asymptotique

• Ex 7 : constante d'Euler. En reprenant les notations de l'exemple 2, on a : $u_n - \gamma = \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$. En posant $v_n = u_n - \frac{1}{2n}$, on obtient une suite qui converge vers γ plus rapidement que (u_n) .

Méthode de Richardson et Romberg

Si l'on est assuré de l'existence d'un développement asymptotique
$$u_n-a=\lambda\,k_1^n+O(k_2^n)$$
, avec $|k_2|<|k_1|<1$, où k_1 est connu, mais pas λ , on pose $v_n=\frac{u_{n+1}-k_1u_n}{1-k_1}$. On a alors $v_n-a=O(k_2^n)$.

<u>Remarque</u> : si on dispose d'un développement asymptotique du type précédent à p termes, la méthode peut être itérée p fois.

Méthode d'Aitken

Avec les mêmes notations que ci-dessus, si k_1 n'est pas connu, on le remplace par $\frac{u_{n+1}-u_n}{u_n-u_{n-1}}$ dans la définition de v_n . On obtient $v_n=\frac{u_{n+1}u_{n-1}-u_n^2}{u_{n+1}+u_{n-1}-2u_n}$ et on a encore $v_n-a=O(k_2^n)$.

• Ex 8 : Appliquer les méthodes de Richardson-Romberg et d'Aitken au calcul de π et de e, pour accélérer la convergence des suites des exemples 1 et 3.

2. Etude de suites divergentes tendant vers l'infini

La rapidité de divergence d'une suite (u_n) tendant vers l'infini se mesure par la rapidité de convergence de la suite $(\frac{1}{u_n})$ vers 0. On peut distinguer ainsi les notions de <u>divergence lente</u>, <u>géométrique</u>, <u>rapide</u>.

- Ex 9: La suite $u_0 > 0$, $u_{n+1} = u_n + \frac{1}{u_n}$ diverge lentement vers $+\infty$; $u_n \approx \sqrt{2n}$.
- $\underline{Ex\ 10}$: La suite $u_0 > 0$, $u_{n+1} = 2u_n + \sqrt{u_n}$ diverge géométriquement vers $+\infty$; il existe a>0 tel que $u_n \approx a \, 2^n$.
- $\underline{\text{Ex }11}$: La suite $u_0 > 0$, $u_{n+1} = u_n + u_n^2$ diverge rapidement vers $+\infty$; il existe a > 0 tel que $u_n \approx \exp(2^n a)$.

<u>Remarque</u>: dans les trois exemples précédents, on peut faire le parallèle avec les processus continus définis par les problèmes de Cauchy correspondants.

Bibliographie

ARNAUDIES et FRAYSSE, Cours de mathématiques, tome 2 : analyse, Dunod OVAERT et VERLEY, Analyse vol. 1, CEDIC/Fernand Nathan