DÉRIVABILITÉ DE LA SOMME D'UNE SÉRIE DE FONCTIONS DE CLASSE C¹. APPLICATIONS.

Remarques générales

- Programme : "Intégration terme à terme d'une série uniformément convergente de fonctions continues sur un segment; application à la dérivation terme à terme d'une série de fonctions de classe C¹."
- Le contenu de ce sujet étant assez réduit (un seul théorème), de nombreux exemples et applications semblent indispensables pour lui donner du corps.

Plan

Toutes les fonctions considérées sont définies sur un intervalle I de R et à valeurs dans un espace vectoriel normé E sur R ou C de dimension finie (donc complet). On suppose connues les généralités sur les séries de fonctions (convergences simple, uniforme, normale).

1. Dérivation terme à terme d'une série de fonctions

a) Le théorème de base

Soit $\sum f_n$ une série de fonctions de classe C^1 sur I convergeant simplement sur I vers une fonction f. Si la série des dérivées $\sum f_n$ est uniformément convergente sur I, alors f est de classe C^1 sur I et pour tout x de I, $f'(x) = \sum_{n\geq 0} f'_n(x).$

b) Raffinements

Soit $\sum f_n$ une série de fonctions dérivables sur I telle que : (i) la série $\sum f_n(x_0)$ converge pour un point x_0 de I ;

- (ii) la série des dérivées Σ f , est uniformément convergente sur tout compact inclus dans I.

- (i) la série $\sum f_n$ converge simplement sur I vers une fonction f, la convergence étant uniforme sur toute partie
 - (ii) f est dérivable sur I et pour tout x de I, f'(x) = $\sum_{n\geq 0} f'_n(x)$.

c) Exemples

- La fonction $\zeta: x \mapsto \sum_{n \geq 1} \frac{1}{n^x}$ est indéfiniment dérivable sur]1, $+\infty[$ et on a $\zeta^{(p)}(x) = \sum_{n \geq 1} \frac{(-1)^p (\ell n \, n)^p}{n^x}.$
- La fonction $F: x \mapsto \sum_{n>0} \frac{e^{inx}}{1+n^2}$ est continue sur \mathbf{R} et dérivable sur $\mathbf{R} \setminus 2\pi \mathbf{Z}$. Elle n'est pas dérivable en 0.
- La fonction $f:(x,y) \mapsto \sum_{n>0} \frac{x^n}{1+y^n}$ est de classe C^1 sur $\mathbf{R} \times \mathbf{R}^{+*}$.

2. Applications

a) Etude des variations d'une fonction définie par une série

Exemple: étudier la fonction
$$f: x \mapsto \sum_{n>1} \frac{\exp(-nx^2)}{n^2}$$
 (monotonie, convexité ...)

b) Séries entières

La somme $f(x) = \sum_{n \geq 0} a_n x^n$ d'une série entière est une fonction indéfiniment dérivable sur son intervalle de convergence et on a $f^{(p)}(x) = \sum_{n \geq p} \frac{n!}{(n-p)!} a_n x^{n-p}$.

Application 1: les fonctions $x \mapsto e^x$, $x \mapsto e^{ix}$, cos, sin sont indéfiniment dérivables sur **R**.

Application 2 : obtention des développements en série entière des fonctions \cos^{-1} , \sin^{-1} , \tan^{-1} , \cosh^{-1} , \sinh^{-1} , th⁻¹ en se ramenant par dérivation terme à terme à celui de $x \mapsto (1+x)^{\alpha}$.

Application 3: résolution d'équations différentielles. Exemple : $(x^2 - x)y'' + (x + 4)y' - 4y = 0$.

c) Calcul de la somme d'une série de fonctions

Exercice 1 : Montrer que la série $\sum_{n\geq 0}$ nx e^{-nx^2} est uniformément convergente sur tout compact de $\mathbf R$ et calculer sa somme.

Exercice 2 : Montrer que la série entière $\sum_{n\geq 0}\frac{4^n}{C_{2n}^n}x^n$ est solution, sur son intervalle de convergence, de l'équation différentielle $2(x-x^2)y'$ - (2x+1)y=-1. En déduire sa somme.

d) Exponentielle d'une matrice, systèmes différentiels linéaires

On définit l'exponentielle d'une matrice M de $M_n(\mathbf{C})$ par $exp(M) = \sum_{n \geq 0} \frac{M^n}{n!}$ (série absolument convergente donc convergente).

L'application $g : \mathbf{R} \to M_n(\mathbf{C})$, $t \mapsto \exp(tM)$ est dérivable sur \mathbf{R} et $g'(t) = M \exp(tM) = \exp(tM) M$.

Application : la solution du système différentiel linéaire homogène à coefficients constants X' = MX telle que $X(t_0) = X_0$ est $X(t) = \exp[(t - t_0)M]X_0$.

Bibliographie

LELONG-FERRAND et ARNAUDIÈS, Cours de mathématiques, tome 2, Dunod LEHNING, Analyse fonctionnelle, Masson FLORY, Topologie et analyse, tome 4, Vuibert MONIER, Analyse, tome 2, Dunod